June Blooms

shallows sweetflag (Acorus) sun bur-reed (in Dane Co., WI) narrow-leaved small branched wet grass-pink showy lady’s-slipper shining lady’s-tresses dry twayblade green orchids orchid Hooker’s large round-leaved blunt-leaved bog purple-fringed ragged-fringed prairie white-fringed northern water-plantain sticky false asphodel white colic-root wood lily milkwort pink racemed Allegheny-vine long-leaved bluets bedstraw pretty Labrador marsh northern southern 3-lobed branching […]

Continue reading..June Blooms

Predicting Big Raster Stacks w/HPC

Here’s the latest of what I’m working on… Fitting models to predict FIA metrics from summarized LiDAR variables separate models for each NPC system boral Validating those models Using those models to predict the values of FIA metrics across the state The last objective, given the fine scale of summarized LiDAR data and the broad […]

Continue reading..Predicting Big Raster Stacks w/HPC

GDAL

Here are some examples of masks I’ve made, keeping values within certain ranges. Then, I get rid of all the other values. gdal_calc.py -A combine_rcls.tif –outfile=result.tif –calc=”1*((A<=119)&(A>=44))” –NoDataValue=0 gdal_calc.py -A result.tif –outfile=FPWF.tif –calc=”1*((A<=54)|(A>=111))” –NoDataValue=0 gdal_calc.py -A combine_rcls.tif –outfile=FD.tif –calc=”1*((A<=37)&(A>=19))” –NoDataValue=0 gdal_calc.py -A combine_rcls.tif –outfile=MH.tif –calc=”1*((A<=77)&(A>=61))” –NoDataValue= This leaves only 1’s where the desired pixel values […]

Continue reading..GDAL